
Magnetic specific heat of isotropic linear chains for S≤5/2

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1974 J. Phys. A: Math. Nucl. Gen. 7 L171

(http://iopscience.iop.org/0301-0015/7/18/002)

Download details:

IP Address: 171.66.16.87

The article was downloaded on 02/06/2010 at 04:55

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0301-0015/7/18
http://iopscience.iop.org/0301-0015
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A Math., Nucl. Gen., Vol. 7 ,  No. 18, 1974. Printed in Great Britain. 0 1974 

LETTER TO THE EDITOR 

Magnetic specific heat of isotropic linear chains for S < 3 
T de Neef, A J M Kuipers and K Kopinga 
Department of Physics, Eindhoven University of Technology, Eindhoven, The Netherlands 

Received 30 September 1974 

.4bstract. Estimates are presented for the magnetic specific heat of an infinite chain of spins 
with isotropic nearest-neighbour exchange. The calculations are performed for S = f ,  1. 2.  
2 and $ The results are presented graphically A simple expression is used to represent the 
results for ferromagnetic as well as for antiferromagnetic interaction. 

The one.dimensiona1 arrangement ofmagnetically-coupled spins has received continuous 
theoretical attention during the last decades. (For a review see Lieb and Mattis (1966).) 
Recently interest has increased due to the success of experimentalists in growing crystals 
with nearly one-dimensional properties, for instance tetra methyl ammonium manganese 
chloride (TMMC) (Dietz er al 1971) and CsMnCl, .2H,O (CMC) (Smith and Freiberg 1968, 
Kobayashi er a1 1973). The thermal behaviour of both salts was studied recently (Takeda 
1974 and Kopinga et al 1975). 

In general interpretation of specific heat data is obscured by a lack of information 
concerning the lattice contribution and by a lack of reliable estimates for the magnetic 
specific heat of the infinite lattice. Even in the case of one-dimensional arrangements 
the theoretical predictions for the specific heat and susceptibility of infinite-spin ensembles 
with S ;> are limited. In view of this and in order to interpret the recent experiments 
on CMC and TMMC we thought it worthwhile to start calculations on these arrangements. 

We present here estimates for the specific heat of infinite chains for all spins up to 
S = $, obtained from cluster calculations. For experimental use we represent the results 
by an approximate formula that should be helpful in fitting procedures. The magnetic 
interaction will be isotropic and between nearest neighbours only, according to the 
Hamiltonian 

.v- I 

X = -25 Si .S i+ ,  
i =  1 

Eigenvalues of .X are obtained by diagonalization of the corresponding matrix. To 
reduce the dimensions of the eigenvalue problems, basis functions were generated that 
are eigenfunctions of T,( = CSJ and that transform conforming to one of the irreducible 
representations of the symmetry group associated with X For a ring of N spins (2 then 
contains the additional term SI . SA,) this is the group D,, while chains transform ac- 
cording to D,. The maximum chain lengths used in the present calculations are N = 11. 
7, 6, 5 and 4 for S = i, 1, i, 2 and 8 respectively. 

Once the eigenvalues are solved, the partition function can be calculated and con- 
sequently the specific heat per spin, C,. . 

For rings and chains, C,, approaches the specific heat of an infinite chain (C,) in 
different ways. For rings there are no boundary effects but non-physical spin correlations 
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are allowed. Chains, on the other hand, suffer from boundary effects but are otherwise 
a fair representation of a one-dimensional system. To obtain a reliable estimate for C, 
the information for different N should be extrapolated and we found chains more useful 
in this procedure than rings. The origin of a suitable extrapolation formula, as used in 
this work, stems from the theory of high-temperature series expansions (HTE) of C, in 
powers of fl( = J / k T ) .  The coefficient of the first term in this series (in f 1 2 )  is proportional 
to Tr ( . H 2 )  and this in turn is proportional to the number of bonds in the finite chain. 
Thus. at high temperatures, C,,, multiplied by N / ( N -  1) will approximate the specific 
heat per spin in the limit N -+ x better than C, itself. 

With decreasing temperature, more terms in the series expansion become important 
and this simple extrapolation fails. However, it was proved (de Neef and de Jonge 1975) 
that the more general relation of the form 

C,v = C,( 1 -U( T ) / N )  (2) 
holds for chains, as long as N is large enough to contain the largest graph that contributes 
appreciably to the HTE. 

A convenient way of extrapolation is thus found in a plot of Ch. against 1,”. This 
technique works even for fairly low temperatures, since it turns out that chains that do 
not contain the largest graph deviate from the supposed linear relation (2) with alter- 
nating sign for N even and odd. Basically the method eliminates the boundary effects 
and is therefore not meaningful with ring calculations. All estimates of C, presented 
here were therefore obtained from chains. The plots of CN against 1/N were fitted to a 
straight line with a weighted least-squares criterion, and the squares sum was used as 
a measure for the uncertainty in the estimated limit. A demonstration of such a fit for 
S = 1 is shown in figure 1, for two temperatures. The full lines are best fits and the error 
bar corresponds to a 2a interval (a is the standard deviation). 

Reliable results are obtained in this way for S = 3 and S = 1 (de Neef and de Jonge 
1974). For higher S the number of solvable chains decreases rapidly with increasing 
spin and application of the method to the case of S = $ alone, for instance, would not 



Letter to the Editor L173 

be very trustworthy. However, comparison of the results with those obtained from the 
HTE makes us confident that the calculated error bounds are quite realistic, even for 
S =- 1. Comparison with the results of Bonner and Fisher (1964) for S = and with 
those of Weng (1968) for S = 1 shows differences of the order of a few per cent near 
T = T, (the temperature for which C reaches a maximum). The results are displayed in 
figures 2 and 3 for ferromagnetic and antiferromagnetic interaction respectively, 
together with Fisher's (1964) result for the classical limit S + 00. The figures are 
conveniently scaled to a reduced temperature F = k T [ J S ( S +  l)]-'. The curves are 
drawn in the temperature range where the estimated uncertainty is less than 4 %. 
This error bound is found at the low-temperature side and the uncertainty is rapidly 

Figure 2. Specific heat of an infinite chain with ferromagnetic interaction ( J  z 0), for different 
spin. The curves are drawn in the region where the estimated error is less than 4%. 

I I I I 
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Figure 3. Specific heat of an infinite chain with antiferromagnetic interaction ( J  < 0), for 
different spin. The curves are drawn in the region where the estimated error is less than 4 %. 
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decreasing with increasing temperature. A value of 0.5% is obtained in all cases in 
the neighbourhood of T,, and for higher temperatures the error can be neglected. 

The main features of C are as expected. For all S (except S = CO) the ferromagnetic 
chain has a lower specific heat than the antiferromagnetic arrangement, but the differences 
gradually diminish with increasing spin. In the classical limit there is no dependence on 
the sign of J. It is clear that the approximation of the specific heat for S = $by the infinite- 
spin model is rather poor. 

Presentation of the results in this form is not very suitable in experimental physics 
where the curves in general are fitted to data points in order to check for instance the 
one-dimensional character of the substance and to estimate the magnitude of J. We 
have therefore attempted to derive a simple expression that represents the curves. For 
practical applications we have chosen a formula with a few parameters that approxi- 
mates C close enough to be of experimental use. (Presentation of the exact series and 
tables of the estimated limit for the complete temperature scale is in progress.) 

A suitable formula was found in the expressions obtained from applications of Pade 
approximants to the HTE of C (Baker 1961): 

The coefficients ai are normally determined by the requirement that the series expansion 
of equation (3) results in the original HTE. In this case however, we merely used the coeffi- 
cients in formula (3) as parameters and calculated their values such that (3) is valid in the 
sense of a least-squares approximation. Limiting the upper bound in the nominator to 
four, we performed fits for a variety of temperature intervals. The requirement that the 
largest difference between the function and the ‘true’ specific heat does not exceed 2% 
for P > 0 (ferromagnet) as well as for fl e 0 (antiferromagnet) determined the appropriate 
temperature interval. The values of the parameters, together with the temperature range 
and T,, are given in table 1. The largest discrepancies are found for the ferromagnetic 
chain with S = +, but even in that case the differences are so small that a plot of the two 
curves is not meaningful for typographic reasons. 

Table 1. Review of the values for the parameters in the formula 

a 2 K 2  + a 3 K 3  + a 4 K 4  
(1 + b , K + b 2 K 2 ) Y  

F =  

that fit best to the calculated specific heat (C-1, for different spin ( K  = l/.T). The columns 
headed ‘interval’ indicate the region for Y where the difference between F and C, is less 
than 2%. .Tm is the reduced temperature for which C, reaches its maximum value. 

Parameters J z O  J < O  

s a2 a3 a4 b ,  b2 y interval Y: interval .T: 

f 10.935 1.6555 2.8722 0.6900 1.7030 2.1765 1.01S4.0 0.88 0.9540 1.32 
1 10.745 -0.1034 1.0334 0.2450 0.8502 2.1078 0.59-2.8 0.85 0.5640 0.86 

10.939 -0.6760 0.6481 0.1047 0.6514 2.0792 0.50-4.0 0.80 0.50-4.0 0.75 
2 11.072 -0.9653 0,4408 0.0408 0.6041 1.9449 0.40-4.0 0.75 0.5Ck4.0 0.67 
4 11.097 -0.8511 0.1799 0.0195 0.5845 1.8081 0.38-4.0 0.71 0 .3640  0.62 
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It should be noted that no conclusions can be drawn from the gradual change of y. 
This parameter is only approximate and by no means an exact result. A detailed study 
for all temperatures with comparison of results from different techniques is in progress 
and will he published in due course. 

I t  is a pleasure to acknowledge the stimulating interest of Professor C Domb and of 
Professor P van der Leeden. 
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